Dispersion Estimates for Third Order Equations in Two Dimensions

نویسندگان

  • Matania Ben-Artzi
  • Herbert Koch
  • Jean-Claude Saut
چکیده

Two-dimensional deep water waves and some problems in nonlinear optics can be described by various third order dispersive equations, modifying and generalizing the KdV as well as nonlinear Schrödinger equations. We classify all third order polynomials up to certain transformations and study the pointwise decay for the fundamental solutions, Z

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical exponents and collapse of nonlinear Schrödinger equations with anisotropic fourth-order dispersion

We calculate the critical exponent of nonlinear Schrödinger (NLS) equations with anisotropic negative fourth-order dispersion using an anisotropic Gagliardo–Nirenberg inequality. We also prove global existence, and in some cases uniqueness, for subcritical solutions and for critical solutions with small L2 norm, without making use of Strichartz-type estimates for the linear operator. At exponen...

متن کامل

THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS

In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.    

متن کامل

EFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR ‎‎E‎VOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER

Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions

This paper contains error estimates for covolume discretizations of Maxwell’s equations in three space dimensions. Several estimates are proved. First, an estimate for a semi-discrete scheme is given. Second, the estimate is extended to cover the classical interlaced time marching technique. Third, some of our unstructured mesh results are specialized to rectangular meshes, both uniform and non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003